
The adoption of Event-Driven Architectures (EDA) to build real-time applications is growing at an
exponential rate. Pub-Sub based event-brokers are the popular choice among software architects
and developers because the Publish Subscribe model enables event-driven architectures and
asynchronous parallel processing, while improving performance, reliability and scalability. The real-
time applications under development operate in environments with different network
characteristics, and across platforms and/or geographies. Quite often the environments in which
publisher and subscriber applications operate are not fully considered with respect to resilience.
Software architects must evaluate the resilience and fault-tolerance features of any platform
serving their applications.

This whitepaper discusses the need for improved client session management in a pub-sub
platform, followed by a description of the resilience features in the Diffusion Intelligent Event-Data
Platform that deliver reliable client session management.

2. The Case for Client Session Management in Pub-Sub
In an event-driven architecture, using a Pub-Sub Event Broker, outages and interruptions can occur
at several stages in the data consumption and distribution flow journey. For example, interruptions
to applications on mobile devices may occur where the connection to a cell-tower is lost. Software
architects are continually seeking ways to provide added resiliency for client applications to assure
continued operation during and after such interruptions.

Below are examples of data streaming under normal operation and examples of situations where
event-data delivery fails.

Figure 1 – Sample Event-Data Distribution Interruptions

Reliable Client Session Management
with Diffusion

1. Introduction

 © Push Technology 2022 Page 2

3. Diffusion Intelligent Event-Data Platform
Diffusion is a holistic pub/sub platform purpose-built to consume, enrich and transform, and deliver
streaming event-data. Data can be ingested into Diffusion from any number of sources and data-
stores, then enriched and organized as topics to which client-applications can subscribe to receive
event-data. Event-Data is published into or subscribed from Diffusion using prebuilt or custom
adapters and a rich library of SDKs/API(s) available in the popular programming languages
including: JavaScript, Java, .Net (C#), Apple, Android, Python. Watch this video for a quick 60
second overview of Diffusion.

eGaming Use Case Example
A sports betting application can ingest sports data (directly from a sports league or multiple leagues)
into Diffusion which is then processed and published as sportsbook odds, scoreboard data, and/or
promotions in real-time.

Figure 2 – Sample Ingest and Event Data Preparation

Client applications can subscribe to Topics which contain the streaming event-data, such as the Topic
Tree represented in Figure 2, subscribe to/Distribution/FootBall/NFL/Pre Match. The delivered event-
data (message) could be:

Figure 3 – Sample Event Data

As event data consumption increases, additional burden is placed upon the network, servers, and
services, impacting their ability to meet business defined SLAs and compounding the possibility of an
outage. Using Diffusion, the burden is lifted from the network and back-end servers through the
platform’s patented delta streaming, conflation, throttling, delay, and other data wrangling capabilities.

{
 "Home_Spread": "+11.5",
 "Home_Odds": "+120",
 "Away_Spread": "-13.5",
 "Away_Odds": "-140",
 "Home_Money_Line": "+375",
 "Away_Money_Line": "-530",
 "Home_OverUnder": "O 53",
 "Home_OverUnder_Odds": "+120",
 "Away_OverUnder": "U 53",
 "Away_OverUnder_Odds": "-140"
}

 © Push Technology 2022 Page 3

4. Reliable Client Session Management in Diffusion
Reliable client session management is implemented in Diffusion in both client and server-side
processes. As such, the following client resilience options have some correlating configuration and
dependencies upon external factors including server settings and devices, such as load balancers.

When beginning to work with Diffusion to subscribe to events, client applications must:

1. Connect to Diffusion
2. Establish or connect to a Session
3. Subscribe to Event-Data Streams

Diffusion enables resiliency for subscribing clients in three distinct areas:

a. Client Connection Parameters define the server, security and resiliency properties for a
client session with Diffusion,

b. Session State Handlers define custom actions when session states change (disconnect,
reconnect, close, error),

c. Data Delivery Resumption Features and Policy for continuation of streaming events from
the time of a disconnection and subsequent re-establishment of a lost connection.

a. Client Connection Parameters
Client applications connect to Diffusion via a rich library of Diffusion SDK/API(s) available in the
popular programming languages including: JavaScript, Java, .Net (C#), Apple, Android, and Python.
In addition, the SDK(s) provide embedded services at runtime for managing the connected sessions
and queueing which are described later in this document.

Initially, connections are established with parameters, including those to improve resiliency.

Figure 4 – Diffusion Client Connection

 © Push Technology 2022 Page 4

Figure 5 - A JavaScript example for a client to connect to Diffusion

Timeout – The Diffusion SDK will automatically continue to retry to connect to Diffusion when a
client disconnection has occurred and until a timeout threshold has been met. A similar threshold
is defined on the server. When a timeout threshold has been met, the server will delete the client
session.

Custom Reconnection Strategies – The Diffusion SDKs also provide a framework and process for
situations where a client application may be designed for extended processing when the
connection is lost. A method can be defined for when a disconnected condition occurs, in the
example above it is named as ‘reconnectionStrategy’. This approach provides the greatest
flexibility for custom processing in case of disconnections.

Pings – The Diffusion server will ping the client connections to ensure they are still connected over
an interval (every 90 seconds is the default). In a similar fashion, a Ping service is available to the
client applications for situations when they are aware of a disconnection/reconnection and want to
ensure the Diffusion connection is still active. Below is a JavaScript example.

Figure 6 – A JavaScript example of how to ping the Diffusion Server Services via a Client Application

diffusion.connect({
host: 'host_name’,
port: 'port’,
principal: 'principal’,
credentials: 'credentials’
transports : ‘WS’,
reconnect : {

timeout : maximumTimeoutDuration,
strategy : reconnectionStrategy

}
}).then(function(session) { ... });

…

function reconnectionStrategy(){
// Custom Recovery/Alerting Code and Actions are placed
 here

}

session.pingServer().then(function(pingResult) {
 // Take action based on ping details.
});

 © Push Technology 2022 Page 5

By default, a client will continue to try to reconnect to Diffusion in 5 second intervals over the period
of the timeout until the timeout threshold has been met. To control the number of reconnection
attempts or time intervals between, reference the example below:

Figure 7 – A JavaScript example for defining the number and timing of reconnection intervals

b. Session State Handlers
Sessions are used by clients to interact with the Diffusion server, such as connecting to topics as
well as publishing and subscribing event data. Sessions have properties specific to the client as
well as objects for control and notification of event services. When a client is disconnected, the
session continues to be queued on the server until the client reconnects or a timeout is reached.
This logical abstraction of physical clients to diffusion sessions enables processing to continue in
situations of physical interruptions.

In figure 5, parameters were listed as part of the Diffusion Connection followed by the creation of a
session. The following statement then acts upon the established Diffusion Session.

Figure 8 – A JavaScript example of session processes

const MAX_RECONNECTION_ATTEMPTS = 5;
let attempts = 0;

diffusion.connect({
 host : host_var4.value,
 port : port_var4.value,
 principal : user_var4.value,
 credentials : "password",

reconnect : {
timeout : 60000,
strategy : function(reconnect, abort) {

if (++attempts > MAX_RECONNECTION_ATTEMPTS) {
console.log('Interval Test, aborting after: ' + attempts);
abort();
} else {
console.log('Interval Test, connection try: ' + attempts);

setTimeout(reconnect, 5000);
}

}
}

}).then(function(session)

diffusion.connect({
…

}).then(function(session) { ... });

 © Push Technology 2022 Page 6

In addition to Reconnection Strategies, the Diffusion client SDKs provide the ability to define
callbacks for certain conditions of the connection, including disconnect, reconnect, close and error.
These callbacks provide additional control for client applications to recover and act upon changes
to external dependencies, such as a route to the server, or possibly server loss.

Figure 9 – A JavaScript example of defining action based upon Session state in a Client
Application

The code in Figure 9 is not dependent upon defining a reconnection strategy and can act
independently, giving more flexibility to different changes in a client session. However, a
reconnection strategy may provide further reconnection features. Selecting the optimal approach is
dependent upon the use case requirements.

Note* Client sessions may also be replicated to additional Diffusion nodes to provide added fault
tolerance and prevent the loss of sessions due to failed hardware/services.

session.on('disconnect', function(reason) {
 // This will be called when we lose connection. Because we've specified the
 // reconnection strategy, it will be called automatically when this event
 // is dispatched
 });

 session.on('reconnect', function() {
 // If the session is able to reconnect within the reconnect timeout, this
 // event will be dispatched to notify that normal operations may resume
 attempts = 0;
 });

 session.on('close', function() {
 // If the session is closed normally, or the session is unable to reconnect,

 // this event will be dispatched to notify that the session is no longer
 // operational.
 });

 session.on('error', function() { console.log('A session error occurred.’);
 });
});

 © Push Technology 2022 Page 7

c. Data Delivery Resumption Features & Policy
When a disconnected client reconnects to Diffusion, there may be need for the client to receive all
the messages which have been published by other services since the disconnection. An example
may be that the client is subscribing to stock ticker event-data from Diffusion and then loses its
connection. Upon reconnection, the client needs the additional ticker data which has been updated
to Diffusion from publishing services.

To resume the delivery of event messages upon reconnection, the Diffusion platform provides
these capabilities.

1. Server-Side Recovery Buffers
2. Client-Side Recovery Buffers
3. Event Message Synchronization Policies

Any messages (data) from Diffusion to clients are initially stored in server side queues for each
client. If a client is unexpectedly disconnected, the queue continues to buffer event messages.

The queues are persisted unit the message(s) are delivered, or a configurable limit has been
reached (the conflation property).

Siimilarly, the client tracks event messages which have been received.

Figure 9 – The default Diffusion behavior to resynchronize data for reconnected sessions

In the above example, the client connection is lost and then re-established. Messages continue to be
published into Diffusion and are stored in separate Queues for each subscribing consumer during
the disconnect (queue A for consumer A in this example). Upon reconnection, a synchronization
occurs with the last messages between the Server and Client recovery buffers. In the above
example, the message count on the server reached Sequence 3.

The client declares that the last message it received had the sequence number 1, so the server sends
messages from sequence number 2 onward. If the server has already flagged a message as having
been sent, it is retrieved from the recovery buffer and resent, otherwise it is taken from the client
queue.

 © Push Technology 2022 Page 8

5. Conclusion
Client Application Resilience with Diffusion is just one category in the enablement of High
Availability and Fault Tolerance for Event Driven Architectures. Please give us a call to learn about
new features and best practices for implementing resilient applications with Push Technology’s
Diffusion.

6. Resources
Additional resources are available to explore and learn more about solutions powered by Diffusion.

Learn more:

§ Learn more about Diffusion at the Product page
o https://www.pushtechnology.com/product-overview

§ View Interactive Demonstrations on the Diffusion Playground
o https://www.pushtechnology.com/diffusion-playground/

§ Review Diffusion Blogs
o https://www.pushtechnology.com/resources/blog/

§ Signup for a Free Trail of Diffusion Cloud
o https://dashboard.diffusion.cloud/signup

§ Contact us to speak to an expert
o https://www.pushtechnology.com/contact-us-form

Video links

§ Diffusion 3-minute Overview
o https://youtu.be/Q-3Aor5Dt1o

§ Data Wrangling with Topic Views in Diffusion
o https://youtu.be/BC58KOpmnQE

§ Low-Code features to build event-driven applications
o https://www.youtube.com/watch?v=QdYG55Z9TNs&list=PLYzjzg_h2TczleO1yH9vbsoq

mritzupGZ&index=2&t=12s
§ Fundamentals of Authentication and Security in Diffusion

o https://www.youtube.com/watch?v=cKugOluHUZI&list=PLYzjzg_h2TczleO1yH9vbsoqmr
itzupGZ&index=5&t=214s

Get Started with Diffusion Today!

UK +44 (0) 20 3588 0900

www.pushtechnology.com

US +1 (408) 7 80-0720 Ireland +44 (0) 20 3588 0900

© 2022 Push Technology Ltd. All Trademarks are the property of their respective owners

https://www.pushtechnology.com/
https://www.pushtechnology.com/product-overview/

